Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
p1(0) -> 0
p1(s1(X)) -> X
leq2(0, Y) -> true
leq2(s1(X), 0) -> false
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(diff2(p1(X), Y)))
0 -> n__0
s1(X) -> n__s1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
p1(0) -> 0
p1(s1(X)) -> X
leq2(0, Y) -> true
leq2(s1(X), 0) -> false
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(diff2(p1(X), Y)))
0 -> n__0
s1(X) -> n__s1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
DIFF2(X, Y) -> LEQ2(X, Y)
DIFF2(X, Y) -> IF3(leq2(X, Y), n__0, n__s1(diff2(p1(X), Y)))
ACTIVATE1(n__0) -> 01
ACTIVATE1(n__s1(X)) -> S1(X)
LEQ2(s1(X), s1(Y)) -> LEQ2(X, Y)
IF3(false, X, Y) -> ACTIVATE1(Y)
DIFF2(X, Y) -> P1(X)
IF3(true, X, Y) -> ACTIVATE1(X)
DIFF2(X, Y) -> DIFF2(p1(X), Y)
The TRS R consists of the following rules:
p1(0) -> 0
p1(s1(X)) -> X
leq2(0, Y) -> true
leq2(s1(X), 0) -> false
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(diff2(p1(X), Y)))
0 -> n__0
s1(X) -> n__s1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
DIFF2(X, Y) -> LEQ2(X, Y)
DIFF2(X, Y) -> IF3(leq2(X, Y), n__0, n__s1(diff2(p1(X), Y)))
ACTIVATE1(n__0) -> 01
ACTIVATE1(n__s1(X)) -> S1(X)
LEQ2(s1(X), s1(Y)) -> LEQ2(X, Y)
IF3(false, X, Y) -> ACTIVATE1(Y)
DIFF2(X, Y) -> P1(X)
IF3(true, X, Y) -> ACTIVATE1(X)
DIFF2(X, Y) -> DIFF2(p1(X), Y)
The TRS R consists of the following rules:
p1(0) -> 0
p1(s1(X)) -> X
leq2(0, Y) -> true
leq2(s1(X), 0) -> false
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(diff2(p1(X), Y)))
0 -> n__0
s1(X) -> n__s1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 7 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
LEQ2(s1(X), s1(Y)) -> LEQ2(X, Y)
The TRS R consists of the following rules:
p1(0) -> 0
p1(s1(X)) -> X
leq2(0, Y) -> true
leq2(s1(X), 0) -> false
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(diff2(p1(X), Y)))
0 -> n__0
s1(X) -> n__s1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
LEQ2(s1(X), s1(Y)) -> LEQ2(X, Y)
Used argument filtering: LEQ2(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
p1(0) -> 0
p1(s1(X)) -> X
leq2(0, Y) -> true
leq2(s1(X), 0) -> false
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(diff2(p1(X), Y)))
0 -> n__0
s1(X) -> n__s1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
DIFF2(X, Y) -> DIFF2(p1(X), Y)
The TRS R consists of the following rules:
p1(0) -> 0
p1(s1(X)) -> X
leq2(0, Y) -> true
leq2(s1(X), 0) -> false
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(diff2(p1(X), Y)))
0 -> n__0
s1(X) -> n__s1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.